A Genetic Algorithm for Multiobjective Structural Optimization
نویسندگان
چکیده
A genetic algorithm for multiobjective optimization is presented which tries to evolve an evenly distributed set of solutions belonging to the Pareto set by: (i) ranking the population according to nondomination properties; (ii) defining a filter to retain Pareto set solutions and (iii) using adequate operators: exclusion, addition and single-objective operator which improves the individuals from the current filter in order to achieve a better distribution of solutions along the Pareto set. Numerical experiments are presented in order to illustrate the performance of the proposed algorithm when applied to multiobjective optimization problems in structural mechanics.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملMonitoring process variability: a hybrid Taguchi loss and multiobjective genetic algorithm approach
The common consideration on economic model is that there is knowledge about the risk of occurrence of an assignable cause and the various cost parameters that does not always adequately describe what happens in practice. Hence, there is a need for more realistic assumptions to be incorporated. In order to reduce cost penalties for not knowing the true values of some parameters, this paper aims ...
متن کاملQuasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization
Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.
متن کاملSTRUCTURAL SYSTEM RELIABILITY-BASED OPTIMIZATION OF TRUSS STRUCTURES USING GENETIC ALGORITHM
Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint....
متن کامل